30 research outputs found

    Chronic electroconvulsive shock treatment elicits up-regulation of CRF and AVP mRNA in select populations of neuroendocrine neurons

    Full text link
    The effects of repeated electroconvulsive seizures (ECS) on expression of mRNAs coding for corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) in neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical (HPA) axis and hypothalamo-neurohypophysial system (HNS) were assessed via semi-quantitative in situ hybridization histochemical analysis. Measures of mRNA content were accompanied by measurement of peptide- and hormone-expression in the relevant neuroendocrine systems. Following 7 daily ECS treatments, CRF mRNA was significantly increased in the medial parvocellular paraventricular nucleus (PVN) of treated rats relative to controls. CRF peptide content of whole PVN homogenates was decreased to 50% of control levels. Changes in CRF message and peptide levels were accompanied by increases in pituitary ACTH content and by elevated plasma corticosterone, suggesting ECS elicits long-term up-regulation of the HPA axis. AVP mRNA in the medial parvocellular PVN, which is known to up-regulate in response to HPA challenge by adrenalectomy, was not increased by ECS. Chronic ECS causes a clear up-regulation of HNS neurons of the supraoptic nucleus, characterized by increased AVP mRNA content, decreased AVP peptide content, and depletion of neurohypophysial AVP. However, no changes were observed in magnocellular vasopressinergic neurons of the PVN, indicating that magnocellular SON and PVN neurons respond differentially to stimulation by ECS. The data indicate that ECS is a potent stimulus for activation of select components of both the HPA axis and the HNS. As such, ECS provides a useful tool for examining mechanism underlying neuroendocrine processes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27688/1/0000072.pd

    Genetic architecture:The shape of the genetic contribution to human traits and disease

    Get PDF

    Corticosterone Inhibition of Osmotically Stimulated Vasopressin from Hypothalamic-Neurohypophysial Explants.

    No full text
    Glucocorticoids inhibit and glucocorticoid deficiency increases vasopressin (AVP) release in vivo. To determine whether the effect of glucocorticoids is hypothalamic and mediated via a glucocorticoid receptor, explants of the hypothalamic-neurohypophysial system were used to measure AVP release during agonist and antagonist exposure. Explants from adult rats, which contained AVP neurons of the supraoptic nucleus with axonal projections terminating in the neural lobe but excluded the paraventricular nucleus, were perifused with an osmotic stimulus (increase of 5 mosmol/h over 6 h) in the absence or presence of corticosterone (100 micrograms/dl) or with corticosterone (100 micrograms/dl) in the absence or presence of the glucocorticoid antagonist RU-486 (10 microM). AVP release was not increased during osmotic stimulation in the presence of corticosterone (Cort) and was 20-30% lower than osmotically stimulated release observed in the absence of Cort. RU-486 reversed the inhibitory effect of corticosterone on AVP release. No changes in AVP mRNA content were detected. These results suggest that Cort inhibits osmotically stimulated AVP release by a direct effect within the hypothalamus and/or neurohypophysis. This effect is mediated by the glucocorticoid receptor through either genomic or nongenomic mechanisms

    Sustained stimulation of vasopressin and oxytocin release by ATP and phenylephrine requires recruitment of desensitization-resistant P2X purinergic receptors

    No full text
    Coexposure of hypothalamo-neurohypophyseal system explants to ATP and phenylephrine [PE; an α1-adrenergic receptor (α1-AR) agonist] induces an extended elevation in vasopressin and oxytocin (VP/OT) release. New evidence is presented that this extended response is mediated by recruitment of desensitization-resistant ionotropic purinergic receptor subtypes (P2X-Rs): 1) Antagonists of the P2X2/3 and P2X7-Rs truncated the sustained VP/OT release induced by ATP+PE but did not alter the transient response to ATP alone. 2) The P2X2/3 and P2X7-R antagonists did not alter either ATP or ATP+PE-induced increases in [Ca2+]i. 3) P2X2/3 and P2X7-R agonists failed to elevate [Ca2+]i, while ATP-γ-S, an agonist for P2X2-Rs increased [Ca2+]i and induced a transient increase in VP/OT release. 4) A P2Y1-R antagonist did not prevent initiation of the synergistic, sustained stimulation of VP/OT release by ATP+PE but did reduce its duration. Thus, the desensitization-resistant P2X2/3 and P2X7-R subtypes are required for the sustained, synergistic hormone response to ATP+PE, while P2X2-Rs are responsible for the initial activation of Ca2+-influx by ATP and ATP stimulation of VP/OT release. Immunohistochemistry, coimmunoprecipitation, and Western blot analysis confirmed the presence of P2X2 and P2X3, P2X2/3, and P2X7-R protein, respectively in SON. These findings support the hypothesis that concurrent activation of P2X2-R and α1-AR induces calcium-driven recruitment of P2X2/3 and 7-Rs, allowing sustained activation of a homeostatic circuit. Recruitment of these receptors may provide sustained release of VP during dehydration and may be important for preventing hemorrhagic and septic shock
    corecore